
Point to Ellipse Distance: A Binary Search Approach

Zhikai Wang

Computer Science Dept. Concordia University,
No. 11, 2155 St. Marc, Montreal ,Canada, H3H2G8 Tel:(1)-514-965 9686

Abstract

We want to find the shortest distance from a point to an ellipse without
solving the roots of a polynomial of order four. We use a generating set of
vectors to span an ellipse without calling high-cost trigonometric functions.
Then we use a binary search method to find a specific normal vector on the
ellipse. If the normal vector starting from a point on the ellipse passes the
outside point specified, the shortest distance is found. We give a MATLAB
implementation, a short discussion and expected future researches.

Key words: Point ellipse distance, generating set, normal vector, binary
search, implementation

1. Introduction

An ellipse is a convex shape. An ellipse in orthogonal position follows

x2

a2
+

y2

b2
= 1, (1)

where x, y, a, b ∈ R and we take a > 0, b > 0. If the ellipse rotates about
(0, 0) with an angle θ(counterclockwise) and then translates itself to (x0, y0).
The new position (xn, yn) can be computed by

{

xn = xcosθ − ysinθ + x0,
yn = xsinθ + ycosθ + y0.

(2)

For validity of such transformations see reference [2]. We can derive the
equation of an ellipse of a generic form as

c1x
2 + c2y

2 + c3xy + c4x + c5y + c6 = 0 (3)

Email address: zhi wan@encs.concordia.ca (Zhikai Wang)

Preprint submitted to Computational Geometry March 3, 2009

from Eq.(1) and Eq.(2). While such derivation is prone to errors.
We stop at

(x − x0)
2cos2θ + 2(x − x0)(y − y0)cosθsinθ + (y − y0)

2sin2θ

a2

+
(y − y0)

2cos2θ − 2(y − y0)(x − x0)cosθsinθ + (x − x0)
2sin2θ

b2

= 1,
(4)

because the equation becomes extremely long and we cannot see an easy way
back from Eq.(3) to Eq.(1) and Eq.(2) by Eq.(4). While, Eq.(1) and Eq.(2)
are sufficient for studying a generic ellipse.

Given a point Q, (xq, yq) outside the ellipse, it is desired to find the

x

P

Qy

b

O

−b

−a a

vpq

vPt

vPn

Figure 1: Shortest distance to an ellipse.

shortest distance to the ellipse. That is, we try to find a point P on the ellipse
such that vector vpq is orthogonal to the tangent vector vPt at P, (x, y), or
vpq is parallel to the normal vector vPn at P.

2

Now, we consider an orthogonal ellipse defined as Eq.(1) and ignore the
degenerate cases. We can get

y′ = −
x

y

b2

a2
. (5)

The tangent of vpq is
yq − y

xq − x
. (6)

The tangent vector of P is orthogonal to the tangent of vpq, thus their
product is −1. We get Eq.(7) with two unknown x and y











−
x

y

b2

a2
·
yq − y

xq − x
= −1,

x2

a2
+

y2

b2
= 1.

(7)

Further, we get the following equation with only one unkown y

(
a2

b2
− 1)2 · y4 + 2(

a2

b2
− 1)yq · y

3 + [y2

q +
a2

b2
x2

q − b2(
a2

b2
− 1)2] · y2

− 2(
a2

b2
− 1)b2yq · y − b2y2

q = 0. (8)

But we have to find the zeros of a polynomial of order four. Without a special
mathematical package or training in numerical programming, we can’t find
the solution of Eq.(8) in an easy way, given the discussion of degenerate cases
left behind.

Can we find a different approach of the above non-linear problem? While,
the task of computational scientists is to find linear approach step by step
for non-linear problems.

2. Spanning an Ellipse in 2D Space

Let V be a vector space over R2, it has a standard basis set of e1 ≡ (1, 0),
e2 ≡ (0, 1) [5]. The whole R2 space can be spanned by a generating set that
are the linear combinations of e1 and e2.

For the convenience in our computation, we use a generating set of V
by levels. Given total levels l, we have n + 1 generating vectors, n = 2l+1,
starting from g0 to gn. We let gn ≡ g0. At the first level we have five vectors

3

O g0 ≡ gn

gn/4

g2n/4

g3n/4

g n
2m

+jn

m

gjn

m

g (j+1)n
m

Figure 2: Generating set over R2.

g0 ≡ (1, 0), gn/4n ≡ (0, 1), g2n/4 ≡ (−1, 0), g3n/4 ≡ (0,−1) and g4n/4 ≡ g0.
From the second level on, at a given level i, we add the same number m = 2i

of new generating vectors as one level upper. Each new vector is added
between the two adjacent upper level vectors. The new vector is the vector
sum of them then normalized. That is

g n
2m

+
jn

m

≡ g jn

m

+ g (j+1)n
m

,

g n
2m

+
jn

m

≡ g n
2m

+
jn

m

/|g n
2m

+
jn

m

|,
(9)

where j = 0, 2, ..., m − 1. We can see the vectors are generated in a fractal
way. Starting from (0, 0), we can span a 2D shape bounded by Eq.(1). For a
generating vector g, there will be a unique point on the ellipse which is the
intersection of a ray from zero with tangent vector g with the ellipse. This
intersection point is rather easy to compute. Suppose the ray along direction
of g, g ≡ (gx, gy) and g is normalized. We denote the intersection point
P ≡ (px, py), t the distance from P to (0, 0). We have

t =
√

1/(g2
x/a

2 + g2
y/b

2) (10)

4

and
P ≡ (tgx, tgy). (11)

For each g in the generating set, we can get one point. With all the points

−5 0 5
−4

−2

0

2

4

x

y

Figure 3: Some ellipses spanned by the generating set.

linked together one by one, the closed loop of the segments approximate an
ellipse. In fact, this method can be extended to span any kind of convex
shapes with a well-defined border equation. The key job is to make the gen-
erating set then compute the distance scale t of each vector. As g is directed,
pointing outside from the center or zero, t is always greater than zero.

For better understanding, we attach an implementation of MATLAB
script in Appendix(A). Please note in the script, MATLAB starting in-
dex is always 1. While, in this text, we utilize starting index 0. In the script
almost all the computations are basic arithmetic operations of addition or
multiplication, and linear transformations. While the general way to span
ellipse has to call trigonometric functions frequently, whose cost is high. In
our implementation, we also enable the rotation and translation transforma-
tions. It is obvious this implementation is not difficult to be re-written in
C/C++, Java or other programming languages. In Figure(3), we show some

5

examples.
The MATLAB commands:

1 span ellipse(2,1,0,[0 0],5, 'k');
2 span ellipse(1.0,0.5, −45,[1 2.5],5, 'b');
3 span ellipse(1.5,0.8,60,[−2 0.5],5, 'b');
4 span ellipse(0.75,2.3, −15,[1.5 −0.5],5, 'b');
5 span ellipse(1.9,0.53,25,[−1 0.9],5, 'r');

The arguments are the ellipse’s x-radius a, y-radius b (orthogonal form), the
rotation angle θ in degrees, the new center coordinate (generic form), the
fractal level, and the edge color.

3. Tangent Vector and Normal Vector

We take an implicit differentiation to Eq.(1), and we get

x′
x

a2
+ y′

y

b2
= 0. (12)

Proposition 3.1. Vector vPt ≡ (x′, y′) in Eq.(12) is the tangent vector of
a point P ≡ (x, y) on an orthogonal ellipse defined by Eq.(1). The vector
vPn ≡ (x/a2, y/b2) is the normal vector of point P. And vPn points outside.

Suppose x′ is a differentiation upon itself, on the ellipse where x′ is defined
vPt ≡ (1, y′). Obviously the tangent of vector vPt is the tangent of P. At
points (a, 0) and (−a, 0), x′ → 0, we defined vPt ≡ (0,−1) or vPt ≡ (0, 1)
respectively. Or we can discuss such degenerate cases separately. We can see
the dot product of vPt and vPn is zero. By the definition of dot product,
the vector orthogonal to the tangent vector must be the normal vector at P,
that is, its tangent computes the normal of this point. vPn points outside
because its orientation is from the center pointing to the quadrant where
(x, y) is located, see Figure(1).

Proposition 3.2. In a given quadrant, a point P cut the segment of an
orthogonal ellipse in this quadrant into two pieces. On the left piece of vPn,
all normal vectors point to the left direction of vPn; on the right piece of vPn,
all normal vectors fall to the right direction of vPn.

6

vP
′

+n

vP′

−
n

vP
′

+t

vP′

−
t

P′

P

vPn

vPn

The right neighborhood

Part II

Part I

Figure 4: Within a quadrant, P divides the ellipse segment to two parts.

Within a quadrant(the axis excluded), the angles between the normal vectors
are all less than 90 degrees. So any normal vector other than P’s will not
turn one round from one side of P to the other. Here the ellipse segment
is sufficiently smooth. So at P’s right side, there is a neighborhood that all
normal vectors fall to the right of vPn, otherwise the convex property will be
destroyed. Suppose P′ is the end of this neighborhood, see Figure(4). vP′

+n

points to the left of vPn and vP′
−n points to the left of vPn. Thus vP′

+t points
to the left of vP′

t
. P′ becomes a turning point. Such should not happen on

an ellipse. The same principle applies to the other part.

Proposition 3.3. Suppose a point Q outside the ellipse is in the same quad-
rant as P. Q decides a unique P whose normal vector passes Q.

7

P

P′

Q

N

6 PNP′

Figure 5: The normal vector passing Q is unique.

Suppose in the ellipse segment, there are two points P and P′ and both their
normal vectors pass through Q. Since the ellipse is convex, so the tangent
lines of the two points, intersect at a point N. Angle ∠PNP′, shown in
Figure(5), is less than 180 degrees.

We can show that

∠PNP′

= ∠PQP′ + ∠QPN + ∠QP′N
> ∠QPN + ∠QP′N′

= 180◦

(13)

It contradicts ∠PNP′ is less than 180 degrees. So P is unique.

Proposition 3.4. If we have a directed line through two points p and q. Let
p ≡ (px, py), q ≡ (qx, qy), and r ≡ (rx, ry). We define a matrix

D ≡





1 px py

1 qx qy

1 rx ry



 . (14)

8

If det(D) > 0 then r lies left of the line. If det(D) < 0 then r lies right of
the line. If det(D) = 0 then r lies on the line.

ϕ

p

q

r
vl

−→pr

−→pq

Figure 6: < vl,
−→
pr > decides the sign of cosϕ.

This proposition originates from a course assignment of a graduate course
[6]. The following proof is given by the author.

Proof We have

1 px py

1 qx qy

1 rx ry

=
qx qy

rx ry
−

px py

rx ry
+

px py

qx qy

= qxry − qyrx − pxry + pyrx + pxqy − pyqx. (15)

We also can get
−→pq ≡ (qx − px, qy − py), (16)

and,
−→pr ≡ (rx − px, ry − py). (17)

See Figure(6). We rotate −→pq about (0, 0) with 90◦ and get a left vector vl of
−→pq. The x component of vl is

(qx − px)cos90◦ − (qy − py)sin90◦. (18)

9

The y component of vl is

(qx − px)sin90◦ − (qy − py)cos90◦. (19)

See Eq.(2). Thus
vl ≡ (py − qy, qx − px). (20)

The dot product

< vl,
−→pr >

= (py − qy)(rx − px) + (qx − px)(ry − py)
= pyrx − qyrx − pxpy + qypx + qxry − qxpy − pxry + pxpy

= qxry − qyrx − pxry + pyrx + pxqy − pyqx

(21)
We have (15) ≡ (21). By the definition of dot product, Eq.(21) decides
the sign of cosϕ shown in Figure(6). If < vl,

−→pr > is less than 0, r must lie
right of direct line pq. If < vl,

−→pr > is equal to 0, r lies on the line pq. If
< vl,

−→pr > is greater than 0, r must lie left of direct line pq. �

4. Binary Search of a Normal Vector

Now we discuss a binary search approach to locate a specific normal vector
on the ellipse.

Given a point Q outside a generic ellipse, which is rotated a θ angle and
translated to (x0, y0), we transform Q to the orthogonal form coordinate
system of the ellipse by the following equation

qnx = (qx − x0)cos(−θ) − (qy − y0)sin(−θ),
qny = (qy − y0)cos(−θ) + (qx − x0)sin(−θ).

(22)

That means we first translate Q into a coordinate system center at (x0, y0)
as (0, 0), then rotate the coordinate by a negative θ. The validity of such
transformation is widely discussed. Further reference please see [2]. The
following discussion will rely on an orthogonal ellipse model. The computa-
tional results will be transformed to the generic system by Eq.(2). There are
four degenerate cases at points (a, 0), (−a, 0), (0, b), and (0,−b). How these
degenerate cases are dealt please see Appendix(B). With these degenerate
cases resolved, our discussion falls within a single quadrant. We take, in
the R2 vector space, two vectors g1 and g2 counterclockwise which bound a
quadrant where the transformed Q is located. For examples, if g1 ≡ (1, 0)

10

then g2 ≡ (0, 1); if g1 ≡ (0,−1) then g2 ≡ (1, 0).
At the first step, let

g3 ≡ g1 + g2,
g3 ≡ g3/|g3|.

(23)

Along the direction of g3 we can find a point P′ on the ellipse together with
its normal vector vP′n.

P′

P

−−→
P′Q

vPn

vP′n

(a)

Q
P

T

U
N

vPn

P′
vP′n

Q

(b)

Figure 7: The angle relations of Proposition(4.1).

Proposition 4.1. Suppose P is the nearest point to Q within a quadrant. If

a point P′’s normal vector vP′n points to the right of directed line
−−→
P′Q then

P′ lies to the right of P. If a point P′’s normal vector points to the left of

directed line
−−→
P′Q then P′ lies to the left of P.

In Figure(7.a), we show that vP′n points to the left of
−−→
P′Q and P′ is on the

left of P. In Figure(7.b), we assume that vP′n points to the left of
−−→
P′Q, but

P′ is on the right of P. Let P′N be the line which vP′n is on. Since the
ellipse is convex, the two tangent line of P and P′ will intersect at a point
U. And line UP′ intersects line PQ at point T . We have the angle relation

∠QPU = ∠QTU − ∠TUP. (24)

In △QP′T, ∠QTU is less than 90◦, because ∠QTP′ = ∠QTU and ∠QP′T >
∠NP′T = 90◦. It contradicts ∠QPU = 90◦. The same principle applies if

11

vP′n points to the left of directed line
−−→
P′Q.

Thus we know, given a P′ calculated we will know the direction of P.
Next, we have two cases

Case I If vP′n points to the left of
−−→
P′Q, then let g2 = g3;

Case II If vP′n points to the right of
−−→
P′Q, then let g1 = g3.

Again we compute g3 by Eq.(23). A new P′ is acquired by new g3. The

0 1 2 3 4 5
0

1

2

3

4

5

x

y

Figure 8: A computational result plotted by MATLAB.

geometrical meaning is that if P′ is to the right of P, we try to move P′

to the left of P; if P′ is to the left of P, we try to move P′ to the right
of P. Each time, our searching space is halved. The search will end till P′

and P overlap. Thus the complexity of this algorithm is O(log n), n is the
maximum discretization number of the vector space over R2.

We attach a MATLAB script implementation in Appendix(B). Figure(8)
shows a computational result. We call the script by MATLAB command line.

12

|det D|max n = 1/|det D|max log(n) iteration times
1e-1 1e+1 1 4
1e-2 1e+2 2 6
1e-3 1e+3 3 10
1e-4 1e+4 4 14

Table 1: |det D|max vs. iteration times

1 r= generic dist(2,1, −45,[2 2],[4.5 5], 1e −2)
2 r = 2.5637 2.8436
3 2.8982 2.8982
4 0.6711 0.7414

r returns the coordinate of point P, the distance between P and Q, and
the normal vector at P. The semantics of this command is that, given an

orthogonal ellipse
x2

a2
+

b2

b2
= 1, where a = 2, b = 1, it is rotated by −45◦

then translated to point (2, 2). Q is point (4.5, 5). The last argument is the
tolerance of the matrix determinant in Proposition(3.4). At each step, we
show line P′Q and the normal vector at P′ (the short blue segment). The
computed P is emphasized by a red mark. We also give another example
in Figure(9) which takes more iteration steps. Table(1) list a the accuracy
tolerance vs. the iteration times of the example in Figure(9). The readers
can experiment more with this script. It can be re-distributed freely for non-
profit academic and educational purposes.

1 r = generic dist (3.75,1.25,25,[−2 3],[−4 7], 1e −3)
2 r = −2.6134 4.0928
3 3.2210 3.2210
4 −0.4302 0.9027

Due to the accuracy setting for convenience of programming, we didn’t test
smaller value of |det D|max. n got by 1/|det D|max may not be a good
measurement. But we can see the iteration times generally follows our ex-
pectation of O(logn). More accurate searching complexity experiments can
be left for further research.

13

−6 −4 −2 0 2
0

2

4

6

8

x

y

Figure 9: An example taking more iteration steps.

5. Discussion and Further Researches

The author’s research interests are scientific computation, computer graph-
ics and graphical user interface design. They don’t immediately fall within
the area of computational geometry. So the vision of this text may be lim-
ited. Some of the arguments may be incomplete. But the author tries to
make them as strong as possible. Some propositions unless with a strong
mathematical proof are only given the according explanations.

Upon the end of this text, a thought immediately flashes to the mind
is that if we can also apply this method to find the shortest distance to an
ellipsoid in 3D space. We may also use the generating set to span tubular
surface which is usually utilized in computer graphics. The further study
may also be extended to convex hull with a dictionary of discrete normal
vectors or a normal vector interpolation function. In this text, point P is
obviously a fixed point in a non-linear system. May we locate P at a faster

14

converging rate. We expect more works to be done.

A. A MATLAB Script Spanning an Ellipse

1 %% Spanning an ellipse
2 %% This script can be re −distributed freely,
3 %% but ONLY for non−profit academic or educational purposes,
4 %% given this file header kept.
5 %% Author: Zhikai Wang
6 %% Computer Science Dept,
7 %% Concordia Univ, QC, Canada
8 %% zhi wan@encs.concordia.ca
9 function h=span ellipse(a,b,rot angle,p0,fractal level,e color)

10 % input: a,b x,y −radius of the ellipse (orthogonal)
11 % It is rotated about (0,0) with rot angle,counterclockwise
12 % then translated to point p0.
13 % fractal level: level of the generating set
14 % e color: edge color of the ellipse
15 % no return values.
16 level = fractal level;
17 n = power(2,level+1);
18 g(0/4 * n+1,:) = [1,0];
19 g(1/4 * n+1,:) = [0,1];
20 g(2/4 * n+1,:) = [−1,0];
21 g(3/4 * n+1,:) = [0, −1];
22 g(4/4 * n+1,:) = [1,0];
23

24 % get all the vectors
25 for i=2:level
26 m = power(2,i);
27 step = n/m;
28 start = step /2 + 1;
29 for j = 1:m
30 g(start+(j −1) * step,:) ...
31 = g(start+(j −1) * step − step/2,:) ...
32 + g(start+(j −1) * step + step/2,:);
33 g(start+(j −1) * step,:) ...
34 = g(start+(j −1) * step,:) ...
35 /norm(g(start+(j −1) * step,:));
36 end
37 end
38

39 % decide the spanning scale of each vector;

15

40 % compute the orthogonal ellipse save
41 % in an array p of 2D points ;
42 s = size(g);
43 for i=1:s(1)
44 gv = g(i,:);
45 g1 = gv(1);
46 g2 = gv(2);
47 t = sqrt(1/(g1 * g1/(a * a) + g2 * g2/(b * b)));
48 p(i,:) = [t * g1 t * g2];
49 end
50

51 % rotate the ellipse
52 angle = rot angle/180 * pi;
53 if angle 6= 0
54 ca = cos(angle);
55 sa = sin(angle);
56 s = size(g);
57 for i=1:s(1)
58 pv = p(i,:);
59 p1 = pv(1);
60 p2 = pv(2);
61 p1p = p1 * ca−p2* sa;
62 p2p = p1 * sa+p2 * ca;
63 p(i,:) = [p1p p2p];
64 end
65 end
66

67 % translate the ellipse to new position p0
68 if norm(p0) 6= 0
69 s = size(g);
70 for i=1:s(1)
71 pv = p(i,:);
72 p1 = pv(1);
73 p2 = pv(2);
74 p1p = p1 + p0(1);
75 p2p = p2 + p0(2);
76 p(i,:) = [p1p p2p];
77 end
78 end
79

80 % draw the ellipse (link the points as a loop)
81 s = size(p);
82 for i = 1: s(1) −1
83 p1 = p(i,:);
84 p2 = p(i+1,:);

16

85 h = patch([p1(1) p2(1)],[p1(2) p2(2)], 'k');
86 set(h, 'EdgeColor' ,e color);
87 end

B. Find a Specific Normal Vector

1 %% Find shortest distance to an Ellipse
2 %% This script can be re −distributed freely,
3 %% but ONLY for non−profit academic or educational purposes,
4 %% given this file header kept.
5 %% Author: Zhikai Wang
6 %% Computer Science Dept,
7 %% Concordia Univ, QC, Canada
8 %% zhi wan@encs.concordia.ca
9 function r=generic dist(a,b,rot angle,p0,Q0,tolerance)

10 % input: a,b x,y −radius of the ellipse (orthogonal).
11 % It is rotated about (0,0) with rot angle,counterclockwise
12 % then translated to point p0.
13 % Q0: a point outside the ellipse.
14 % tolerance: the max absolute value of det D
15

16 % return values:
17 % r(1,:) return point P, Q0P is the shortest
18 % r(2,:) the distance |Q0P|
19 % r(3,:) the normal vector at P,pointing outside
20

21 angle = rot angle/180 * pi;
22 cosine theta = cos(angle);
23 sine theta = sin(angle);
24

25 % transform Q0 into the orthogonal coordinate system
26 Q = [0 0];
27 Q(1) = (Q0(1) −p0(1)) * cosine theta ...
28 + (Q0(2) −p0(2)) * sine theta;
29 Q(2) = (Q0(2) −p0(2)) * cosine theta ...
30 − (Q0(1) −p0(1)) * sine theta;
31

32 % use V to tell which quadrant Q is at
33 V = Q −[0 0];
34 if norm(V) == 0
35 s = 'ill condition, Q is at zero'
36 r = −1;

17

37 return ;
38 end
39

40 % If Q is inside the ellipse or on the ellipse
41 V = V/norm(V);
42 gv = V;
43 g1 = gv(1);
44 g2 = gv(2);
45 t = sqrt(1/(g1 * g1/(a * a) + g2 * g2/(b * b)));
46 p = [t * g1 t * g2];
47 if norm(p) ≥ norm(Q)
48 s = 'ill condition, Point Q inside or on the ellipse'
49 r = −1;
50 return ;
51 end
52

53 % four degenerate cases; but two solutions
54 if V(1) == 0
55 r(1,:) = [0 b * V(2)];
56 r(1,:) = transform2d(r(1,:),cosine theta,sine theta,p0);
57 dist = abs(Q0(2)) −b;
58 r(2,:) = [dist dist];
59 r(3,:) = [0 V(2)/abs(V(2))];
60 r(3,:) = transform2d(r(3,:),cosine theta,sine theta,p0);
61 end
62 if V(2) == 0
63 r(1,:) = [a * V(1) 0];
64 r(1,:) = transform2d(r(1,:),cosine theta,sine theta,p0);
65 dist = abs(Q0(1)) −a;
66 r(2,:) = [dist dist];
67 r(3,:) =[V(1)/abs(V(1)) 0];
68 r(3,:) = transform2d(r(3,:),cosine theta,sine theta,p0);
69 end
70

71 if V(2) == 0 | | V(1) == 0
72

73 span ellipse(a,b,rot angle,p0,6, 'k');
74 hold on
75 px =[Q0(1) r(1,1)];
76 py =[Q0(2) r(1,2)];
77 plot(px,py, 'ro');
78

79 % draw PQ
80 h = patch([r(1,1) Q0(1)],[r(1,2) Q0(2)], 'k');
81 set(h, 'EdgeColor' , 'k');

18

82 % draw the normal vector
83 h = patch([r(1,1) r(1,1)+dist/4.0 * r(3,1)], ...
84 [r(1,2) r(1,2)+dist/4.0 * r(3,2)], 'k');
85 set(h, 'EdgeColor' , 'b');
86

87 daspect([1 1 1]);
88 return ;
89 end
90 % tell which quadrant Q is in;
91 % set the bounding generating vecotrs
92 if V(1) > 0
93 if V(2) > 0
94 g(1,:) = [1 0];
95 g(2,:) = [0 1];
96 g(3,:) = g(1,:) +g(2,:);
97 g(3,:) = g(3,:)/norm(g(3,:));
98 else
99 g(1,:) = [0 −1];

100 g(2,:) = [1 0];
101 g(3,:) = g(1,:) +g(2,:);
102 g(3,:) = g(3,:)/norm(g(3,:));
103 end
104 else
105 if V(2) > 0
106 g(1,:) = [0 1];
107 g(2,:) = [−1 0];
108 g(3,:) = g(1,:) +g(2,:);
109 g(3,:) = g(3,:)/norm(g(3,:));
110 else
111 g(1,:) = [−1 0];
112 g(2,:) = [0 −1];
113 g(3,:) = g(1,:) +g(2,:);
114 g(3,:) = g(3,:)/norm(g(3,:));
115 end
116

117 end
118

119 %gv = g(3,:);
120 %g1 = gv(1);
121 %g2 = gv(2);
122 t = sqrt(1/(g(3,1) * g(3,1)/(a * a) + g(3,2) * g(3,2)/(b * b)));
123 p = [t * g(3,1) t * g(3,2)];
124 p norm = [p(1)/(a * a) p(2)/(b * b)];
125 p norm = p norm/norm(p norm);
126

19

127 v pq = Q − p;
128 dist = norm(v pq);
129 if dist== 0
130 r = 'Ill conditioned, point Q lies on the ellipse.'
131 return ;
132 end
133 v pq = v pq /dist;
134 % draw P'Q
135 pd = transform2d(p,cosine theta,sine theta,p0);
136 h = patch([pd(1) Q0(1)],[pd(2) Q0(2)], 'k');
137 set(h, 'EdgeColor' , 'k');
138 % draw normal vector of P'
139 pd norm = transform2d(p norm,cosine theta,sine theta,[0 0]);
140 h = patch([pd(1) pd(1)+dist/4.0 * pd norm(1)], ...
141 [pd(2) pd(2)+dist/4.0 * pd norm(2)], 'k');
142 set(h, 'EdgeColor' , 'b');
143

144 % use det A to tell r is left/right or on directed line pQ
145 pr = p + dist/4.0 * p norm;
146 it = 1
147 A = [1 p(1) p(2); 1 Q(1) Q(2); 1 pr(1) pr(2)];
148

149 dta = det(A) ;
150

151 while abs(dta) > tolerance
152 %if it > 20
153 % break;
154 %end
155

156 if dta >0
157 % left, then we turn to right
158 g(2,:) = g(3,:);
159 g(3,:) = g(1,:) +g(2,:);
160 g(3,:) = g(3,:)/norm(g(3,:));
161 else
162 g(1,:) = g(3,:);
163 g(3,:) = g(1,:) +g(2,:);
164 g(3,:) = g(3,:)/norm(g(3,:));
165 end
166

167 t = sqrt(1/(g(3,1) * g(3,1)/(a * a) + g(3,2) * g(3,2)/(b * b)));
168 p = [t * g(3,1) t * g(3,2)];
169 p norm = [p(1)/(a * a) p(2)/(b * b)];
170 p norm = p norm/norm(p norm);
171

20

172 v pq = Q − p;
173 dist = norm(v pq);
174 if dist== 0
175 r = 'Ill conditioned, point Q lies on the ellipse.'
176 return ;
177 end
178 v pq = v pq /dist;
179

180 pd = transform2d(p,cosine theta,sine theta,p0);
181 h = patch([pd(1) Q0(1)],[pd(2) Q0(2)], 'k');
182 set(h, 'EdgeColor' , 'k');
183 % draw normal vector of P'
184 pd norm = transform2d(p norm,cosine theta,sine theta,[0 0]);
185 h = patch([pd(1) pd(1)+dist/4.0 * pd norm(1)], ...
186 [pd(2) pd(2)+dist/4.0 * pd norm(2)], 'k');
187 set(h, 'EdgeColor' , 'b');
188

189 pr = p + dist/4.0 * p norm;
190 A = [1 p(1) p(2); 1 Q(1) Q(2); 1 pr(1) pr(2)];
191 dta = det(A) ;
192 it = it + 1
193 end
194

195 r(1,:) = pd;
196 r(2,:) = sqrt((pd(1) −Q0(1)) * (pd(1) −Q0(1)) ...
197 + (pd(2) −Q0(2)) * (pd(2) −Q0(2)));
198 r(3,:) = pd norm;
199

200 span ellipse(a,b,rot angle,p0,6, 'k');
201 hold on
202

203 px =[Q0(1) r(1,1)];
204 py =[Q0(2) r(1,2)];
205 plot(px,py, 'ro');
206 hold on
207

208 daspect([1 1 1]);

C. An Auxiliary Function of Appendix(B)

1 %% transform2d.m: rotation theta then translate to p0
2 %% This script can be re −distributed freely,

21

3 %% but ONLY for non−profit academic or educational purposes,
4 %% given this file header kept.
5 %% Author: Zhikai Wang
6 %% Computer Science Dept,
7 %% Concordia Univ, QC, Canada
8 %% zhi wan@encs.concordia.ca
9 function r=transform2d(inPoint,cosine theta,sine theta,p0)

10

11 x = inPoint(1);
12 y = inPoint(2);
13

14 outPoint x = x * cosine theta − y* sine theta + p0(1);
15 outPoint y = y * cosine theta + x * sine theta + p0(2);
16

17 r = [outPoint x outPoint y];

References

[1] Ioannis Z. Emiris, George M. Tzoumas, Algebraic study of the Apollo-
nius circle of three ellipses,
http://cgi.di.uoa.gr/∼geotz/papers/EmiTzo-EWCG05p-ApollEll.pdf,
Last access Feb 28, 2009.

[2] Donald Hearn, M. Pauline Baker, Computer Graphics with OpenGL 3rd
edition, Prentice Hall, 2003.

[3] Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Ellipse,
Last access Feb 28, 2009.

[4] MATLAB, the Language of Technical Computing,
http://www.mathworks.com/products/matlab/,
Last access Feb 28, 2009.

[5] Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Al-
gebra Fourth Edition, Prentice, New Delhi, 2007.

[6] Thomas Fevens, Graduate course COMP 6711, Computational Geome-
try, Concordia University, Canada, 2007.

[7] Mark de Berg, marc van Kreveld, Mark Overmars, Otfried Schwarzkopf,
Computational geometry, Second Revised Edition, Springer, 2000.

22

